
A Prototype Distributed Visualization

System

Part I: Implementation of Prototype System

Contents

1 Introduction 2

2 Distributed Visualization Environment 2

2.1 Objectives : 3

2.2 Implementation Criteria : 4

2.3 Objective Function : 4

3 Prototype System 5

3.1 Operation Modes : 5

3.2 Parallel Implementation : 6

3.3 Application Program Interface : 7

4 Performance Analysis 8

4.1 Compression Parameters : 8

4.2 Parallel Versus Sequential : 9

1

1 Introduction

The objective of the distributed visualization project under HPCC/ESS (High-Performance

Computing and Communication/Earth and Space Science) is to provide an interactive data

visualization environment to remote HPCC users. This objective has been approached by the

project in three technical disciplines: data visualization, data compression, and networking.

This report summarizes the research and development e�ort made during the task period

('94-'96) in the data compression discipline.

The computational power of a centralized high performance computing facility cannot

be fully appreciated by the remote user without an adequate data transmission capability to

transfer the processed data in a timely manner. Network congestion is expected to persist,

based on the fact that both the growth of the user community and advances in processor

technology have continuously been ahead of advances in network technology. The transmis-

sion bottleneck currently precludes the use of distributed visualization applications which

involve the interactive display of large volumes of data. The objective of this task is to

provide a near-real-time (several frames per second) visualization capability to remote users

by employing on-line data compression/decompression technology.

Distributed Visualization involves data ow between a visualization server computer and

a client computer over a global network. When the network transfer rate is low or the

network congested, the data transfer time can be too long (over a minute for a 512 � 512

image frame) to support an interactive data processing environment. In order to reduce the

data transmission time, data volume must be reduced signi�cantly.

A signi�cant reduction in data volume cannot be achieved, however, without a reduc-

tion in data quality. Further, processing time for data compression/decompression becomes

additional overhead. Thus the compression algorithm must be computationally simple and

provide both a high compression rate and low data-quality degradation. A reversible com-

pression method|E�cient Reversible Image Compression (ERIC)|was developed to satisfy

this requirement. ERIC provides lossy as well as lossless modes. In the lossless mode, the

compressed data can be transferred for any arbitrary compression rate; in the lossy mode,

the compression rate cannot be precisely controlled. A prototype system was developed us-

ing ERIC, and a comprehensive performance benchmark was made. A detailed description

of the ERIC algorithm is presented in Part II.

This report examines the necessary and su�cient conditions for achieving the objective of

distributed visualization, presents a trade-o� analysis formula, discusses a parallel prototype

system implementation, and validates the performance of the prototype system according to

the trade-o� analysis formula presented herein.

2 Distributed Visualization Environment

Employing data compression to reduce transmission time introduces computational overhead

and data quality degradation. Thus, a careful trade-o� analysis is necessary, weighing the

gain due to transmission time reduction versus the loss due to computational overhead and

data quality degradation. This chapter examines the objectives of the distributed visualiza-

tion environment, and develops an objective function for optimization.

The following symbol convention is adopted for this discussion.

2

� symbol names

{ C : compression rate

{ D : data

{ O : operation

{ S : speed

{ T : time

{ V : data volume

� subscripts

{ N : Network

{ H : Host (Visualization Server) system

{ U : User (Client) system

{ c : compression, compressed

{ cv : compressed data visualization

{ ct : compressed data transmission

{ d : desired

{ dc : decompression, decompressed

{ r : raw

{ rv : raw data visualization

� indices

{ l : decomposition level

{ b : bit plane

{ p : processor

2.1 Objectives

In order to satisfy the requirements of a distributed visualization environment, one's data

compression approach must achieve the following two objectives.

Objective 1: The time involved in compressed data visualization must be signi�cantly

less than that of raw data visualization.

Tcv � Trv (1)

Objective 2: The loss introduced by data compression (the di�erence between the original

data and the restored data) must be acceptable.

Dr � Odc(Dc(C)) < � (2)

3

2.2 Implementation Criteria

In order to optimize the performance of a data compression, the following three implemen-

tation criteria may be observed.

Criterion 1: The time for compression, transmission, and decompression may be balanced

so that the execution times can be pipelined optimally. In a pipelined implementation, the

time involved in compressed data visualization is the maximum of the three time values.

Tcv =MAX(Tc; Tct; Tdc) (3)

The time for compression and decompression is a function of the compression speed of

the respective computational platform and the operational complexity involved.

Tc = Oc=SH (4)

Tct = Vc=SN (5)

Tdc = Odc=SU (6)

Criterion 2: The time for compression or decompression may not be longer than the time

for transmission; so the time involved in compressed data visualization can be represented

as the time for transmission only.

Tct �MAX(Tc; Tdc) (7)

Tcv = Tct (8)

Criterion 3: The second criterion implies that there is no bene�t in reducing the data

volume beyond that which can be transferred within the time required to either compress or

decompress the data, whichever is higher.

Vc � SNMAX(Tc; Tdc) (9)

2.3 Objective Function

An optimal application of the compression technique in a distributed visualization environ-

ment can be formulated as an objective function where the optimal solution is to maximize

the objective function. An objective function is suggested as a gain function expressed be-

low, where the gain is computed as a weighted sum of the time savings in data transfer plus

the amount of data degradation.

Gain = w1(Trv � Tcv) + w2(�jDr � Odc(Dc(C))j) (10)

4

The weighting factors may be dependent on applications and operational situations. For

example, when a user is interested in quick browsing, the data quality degradation may

not matter as much as the transmission speed. Also, due to the data dependency of the

relationship between the compression rate and quality degradation, it is di�cult to provide

�xed values for the optimal trade-o� between the compression rate and the data loss.

3 Prototype System

A prototype system was developed employing a client/server model where compression is

performed on a visualization server and decompression and display functions are performed

on a client. The prototype system employs a Cray T3D as a server system and a UNIX work-

station as a client. The compression function was implemented to support two application

modes: quick browse and progressive transmission.

The quick browse mode compresses data for a desired compression rate while the pro-

gressive transmission mode compresses data losslessly and allows for progressive retrieval of

the compressed data for any arbitrary compression rate. An additional feature of the pro-

gressive transmission mode is in compression rate controllability. This section discusses the

two operation modes for their application areas, examines the steps involved in parallel com-

pression algorithm implementation, and describes the interface mechanism for integrating

the compression with visualization application programs.

3.1 Operation Modes

Both quick browse mode and progressive mode utilize Fast Wavelet Transform (FWT)-

based subband coding compression algorithm. The basic steps involved in the compression

algorithm are FWT, quantization, run-length encoding, and Hu�man encoding. In the quick

browse mode, the quantization is applied once with a step size appropriate for the desired

compression rate. The one-step quantization can be compared to discarding the bits below

the quantization step size. The discarded bits represent the information loss (which is referred

to as data quality degradation). Due to the coarse quantization step size, the compression

rate cannot be controlled precisely.

In the progressive transmission mode, the transformed coe�cients are decomposed into

bit planes and each bit plane is encoded independently. The bit plane decomposition is

equivalent to applying the quantization step iteratively to the transformed coe�cients where

the quantization step size is reduced by a factor of two per iteration. When the compression

rate is speci�ed, the encoded bit planes are counted from the highest bit plane until the count

reaches the speci�ed compressed data size. The bit plane ordering allows precise control of

the compression rate with a minimum of information loss. A detailed description is available

in the Bit-Plane Encoding section of the ERIC algorithm report (in Part II).

The advantage of the quick browse mode is in the computational simplicity (one-step

quantization), while the advantage of the progressive transmission mode is in the exible

retrieval of the compressed data. An optimal usage of the two modes in an interactive

visualization environment may be coupling them to the viewer's motion speed where during

a fast y-over period, the quick browse mode is employed and as the viewer slows down the

5

mode is switched to the progressive transmission mode. As a viewer stops at a location, the

location data may be transmitted in full resolution progressively.

3.2 Parallel Implementation

The four basic steps in the compression algorithm|FWT, quantization, run-length encoding,

and Hu�man encoding|were examined for parallelism by analyzing operational locality,

homogeneity, and load balancing.

Initially, a complete domain decomposition approach was employed, where a dataset is

equally divided among the processors and each subarea is independently compressed. This

approach was found to be sub-optimal with respect to compression rate and data quality. The

overhead of each processor having its own Hu�man table became very large as the number of

processors increased, reducing the maximum achievable compression rate. The data quality

was degraded further due to the inter-processor data quality variation. The variation was

introduced by applying equal compression rates among processors; it also stemmed from the

discontinuity at segment boundaries.

To correct the Hu�man table overhead problem, a single-Hu�man-table approach was

adopted. In order to use one Hu�man table among the processors, the histograms of the

run-length code from each processor need to be merged to generate a global histogram.

From the global histogram, each processor builds a Hu�man table and generates Hu�man

codes. Since the Hu�man table is the same for all nodes, only one Hu�man table needs to

be transmitted to the decompressor. The time introduced by the histogram merging step

was found to be insigni�cant.

To correct the inter-processor data quality variation in the �xed compression rate, the

compressed data size information per bit plane is shared among the processors so that the

compression rate is applied globally. The total compressed data size was compared to the

total compressed bit plane size to compute the number of bit planes that can be transmitted

whole; for the bit plane that needs to be transmitted partially, the partial amount per

processor was computed based on equal rationing. The formula can be expressed as below:

Vd = Vr=Cd (11)

Vx =
p=PX

p=1

b=xX

b=B

Dc(b; p) < Vd (12)

Vy = Vd � Vx (13)

Vz =
p=PX

p=1

Dc(x� 1; p) (14)

V (q) = (Vz=Vy)Dc(x� 1; q) (15)

where Vd is the desired data volume, Vx is the data volume of the bit planes that can be

transmitted as a whole, Vy is the data volume available for the (x� 1)-th bit plane, Vz is the

data volume of the (x� 1)-th bit plane, V (q) is the data volume allowed to be transmitted

per processor q for the (x � 1)-th bit plane, P is the number of processors employed for

compression, and B is the highest bit plane number.

6

The boundary discontinuity is caused by the arti�cial data assumed by each processor

during the wavelet transform process at the boundary. The arti�cial data assumed at the

boundary yields a di�erent level of loss at each boundary between adjacent processors when

the transformed coe�cients are quantized. The di�erent levels of loss imply di�erent levels of

restorability, which contributes to the quilted appearance when the image is decompressed.

To correct the boundary discontinuity problem entirely, the real data must be used dur-

ing the wavelet transformation for the entire subarea so that the transformed coe�cients

computed by the multiple processors are the same as those computed by a single processor.

However, such provision requires a very large amount of overlap between processors. For the

prototype, the overlap size was empirically determined by observing the detectability of the

distortion as well as RMS error. The overlap was not necessary for a compression rate less

than 16; and one or two lines were found to be su�cient for a compression rate less than

100.

3.3 Application Program Interface

When the compression and decompression functions are integrated in an application pro-

gram, the application program must establish the network connection between the server

and the client, distribute the data among the processors, initialize the compression function,

and apply compression per frame in a loop. The number of processors employed for com-

pression may be a subset of the processors involved in the visualization application, in order

to meet the minimum subblock size constraint.

� Network Connection : The compression function can return the compressed data from

individual nodes as well as from node 0 after merging the results from all nodes. The

individual transmission may provide an additional speed up when the compression time

varies signi�cantly among the nodes. For each node that transfers the compressed data

to the host system, a socket connection must be established.

� Initialization : During initialization, the following information on the data must be

provided in order to allocate necessary memory, reformat the data, set up appropriate

compression parameters, and initialize the decompressor.

{ socket ID

{ global data size

{ subarea size

{ number of processors employed for compression per spectral channel

{ number of spectral channels of data (1 for B/W, 3 for color, 4 for color + overlay)

{ desired compression option (0 for no compression, 1 for browse(default), 2 for

progressive)

{ desired compression rate (integer greater than 1)

{ result merging option (0 for no merging (default), 1 for merging: when merging

option is not set, the socket IDs must be provided for all nodes)

7

� Compression : Per frame, the starting o�set and memory location of the subarea

are passed to the compressSend() function. The compressSend function performs data

preparation, compression, and transmission of the compressed data to the decompressor

through the socket ID.

� Reinitialization : Only the compression rate may be reinitialized between compressions.

4 Performance Analysis

The performance of the parallel distributed visualization system employing data compression

was investigated with respect to execution time, data degradation, and data volume reduc-

tion. The investigation was performed by benchmarking the above information for various

compression option settings including number of processors, decomposition level, compres-

sion rate, etc. The benchmark timing was obtained on the Cray T3D for compression and

SGI Indigo 2 Extreme (IRIX 5.3) for decompression and display, using a 512�512 gray-scale

image of Lena.

4.1 Compression Parameters

There are four parameters that a�ect compression results in terms of execution time, achieved

compression rate, restored data quality, and required boundary area overlap. They are

� nllh : number of decomposition levels for which both low-pass and high-pass coe�cients

are computed

� nllow : number of decomposition levels for which only low-pass coe�cients are computed

� Q : quantization factor which is applied to quantize the transformed coe�cients

� overlap : size of overlapped area at segment boundary

The minimum subarea size per processor (nmin), which is a lower bound in each dimen-

sion, is a function of the decomposition levels and the wavelet �lter size as de�ned below.

(In the prototype, a 5� 3 wavelet �lter was employed.)

nmin � 2l + 2 (16)

l = nllow + nllh (17)

The quantization factor plays the major role in determining the resulting compression

rate and noise. The other parameters provide minor improvements in some special cases. For

example, the reason for allowing a decomposition level for which only low-pass coe�cients

are computed is to reduce execution time when high compression rate is speci�ed assuming

that the high-pass coe�cients can be ignored. Thus, the parameter is irrelevant in the cases

with low compression rate.

The achievable compression rate was analyzed for four quantization factors (32, 64, 128,

256) with no low-pass-only level (nllow = 0) and with one low-pass-only level (nllow = 1).

8

These eight cases provided a guideline to an appropriate mapping between compression rate

and the parameter setting. The overlap amount was adjusted to achieve compatible visual

quality at boundaries between the runs employing di�erent number of processors.

Part III.A shows the plots of compression/decompression time as a function of the number

of processors employed for computation. Times with and without the use of overlap are

plotted. These �gures also show plots of the compression rate obtained with and without

the use of overlap. A way to avoid using too large an amount of overlap is to not discard

the overlapping area, but instead perform an averaging operation in the area of overlap.

This method attempts to smooth the boundary transition, thereby reducing the amount of

overlap used.

4.2 Parallel Versus Sequential

The parallel version introduces three types of computational overheads compared to the

sequential version: data distribution, global histogram generation, and data merging. It also

introduces two types of performance degradation: compression rate reduction, and larger

noise due to the shortened run length and increased number of boundaries as the data

is segmented to many subareas. In order to understand the computational overhead and

performance degradation, a detailed benchmark was performed.

Details of the benchmark results are presented in Part III.B. For each benchmark run,

the compression and decompression functions were executed 10 times in a loop. On the

compression side, each timing result represents an average value (in seconds) whereas on the

decompression side, each timing result represents the minimum value.

For the computational overhead analysis, the transform, quantization, and encoding steps

were benchmarked for the �ve cases of di�erent number of processors. The Entropy Encode

step was examined for run-length coding and Hu�man coding. And the Hu�man coding step

was further investigated for histogram generation, global histogram generation, Hu�man

table generation, and Hu�man encoding. The timing distribution demonstrates that the

computation time reduces linearly as the number of processors increases for the transform,

quantization, and run-length encoding, indicating no or negligible overhead. The detailed

timing analysis of the Hu�man coding step indicates a constant overhead of 0.05 seconds

for global histogram generation and Hu�man table generation.

For the performance degradation analysis, the run-length code size (RLE datasize), Hu�-

man table size (HTable size), compressed code size (HE datasize), and noise level (RMS error)

were benchmarked for the �ve cases of di�erent numbers of processors. From the list, it can

be noted that the compression rate reduction of approximately 0.25 per additional processor

is necessary to prevent an increase in the level of noise.

9

